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Explicit solutions to the two-phase Stefan problem for
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Abstract. A reciprocal transformation is employed to reduce a two-phase Stefan problem in
nonlinear heat conduction into a form which admits a class of exact solutions analogous to the
classical Neumann solution. The problem is considered for materials of Storm type (Rogers 1985
J. Phys. A: Math. Gen.18 105–9). Two related cases are considered, one of them has a flux
condition of the type−q0/

√
t (q0 > 0) and the existence and uniqueness of the solution is proved

whenq0 satisfies a certain inequality which generalizes the work of Tarzia (1981Q. Appl. Math.
39491–7), obtained for constant thermal coefficients, the other one has a temperature condition on
the fixed face and the existence and uniqueness is proved for all data.

1. Introduction

We consider a two-phase Stefan problem for a semi-infinite regionx > 0 with phase change
temperatureTf . It is required to determine the evolution of the moving phase separation
boundaryx = X(t) and the temperature distribution. The modelling of this type of system
is a problem of great mathematical and industrial significance. Phase-change problems
appear frequently in industrial processes and other problems of technological interest [1, 6–
9, 11, 14, 25]. An extensive bibliography on the subject was given in [21].

Here, we consider a phase-change process (Stefan problem) for a nonlinear heat conduction
equation which admits a class of exact solutions analogous to the classical Neumann solution
[13]. In this paper we shall use the similarity method in order to find an exact solution to
a free-boundary problem. This methodology has been used successfully in many problems,
for example, [3–5, 10, 12, 17, 18, 22–24]. In all of these cases, this methodology has led to
important physical consequences.

In [15] the following free-boundary (fusion process) problem was considered:

ρcp1(T1)
∂T1

∂t
= ∂

∂x

(
k1(T1)

∂T1

∂x

)
X(t) < x <∞ t > 0 (1)

k1(T1)
∂T1

∂x
− k2(T2)

∂T2

∂x
= LρẊ x = X(t) (2)

T1 = T2 = Tf x = X(t) (3)

ρcp2(T2)
∂T2

∂t
= ∂

∂x

(
k2(T2)

∂T2

∂x

)
0< x < X(t) t > 0 (4)
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396 M F Natale and D A Tarzia

T1(x, 0) = T0 < Tf (5)

X(0) = 0 (6)

k2(T2(0, t))
∂T2

∂x
(0, t) = − q0√

t
q0 > 0 t > 0. (7)

In the above,Ti(x, t), cpi (Ti), ki(Ti), i = 1, 2 represent in turn the temperature
distribution, specific heat and thermal conductivity in the two phases, solid and liquid,
respectively. The densityρ of the medium is assumed to be constant andL denotes the
latent heat of fusion of the medium. Here−q0/

√
t denotes the prescribed flux on the boundary

x = 0, whileT0 represents the initial temperature of the medium. It is noted that the two-phase
Stefan problem in linear heat conduction with constant thermal coefficients and a heat flux of
the type (7) was investigated in [20]. It was proved that a necessary and sufficient condition
in order to have an instantaneous phase-change process is that an inequality for the coefficient
q0 should be verified.

Our investigation is henceforth confined to materials for which

Ki
8′i
82
i

= ki(Ti) i = 1, 2 Ki > 0 (8)

where

8i(Ti) =
∫ Ti

T0i

Si(σ ) dσ Si(Ti) = ρcpi (Ti) i = 1, 2. (9)

The goal of this paper is to complement [15] and to prove in section 2 the existence and
uniqueness of the solution of the problem (1)–(7) if and only if the positive constantq0 is large
enough, i.e.

q0 >
√
K2G

−1

(√
K2

K1

1

(81(Tf )/81(T0)− 1)

)
(10)

whereG−1 : (1,+∞) 7−→ (0,+∞) is the inverse function ofG with

G(x) = erf(x) +
1√
π

exp(−x2)

x
x > 0. (11)

The functionG was defined in [2] and it was proved that

G(0+) = +∞ G(+∞) = 1 and G′(x) < 0 ∀ x > 0. (12)

The inequality (10) for the coefficientq0 generalizes the corresponding inequality which
has been obtained for phase-change materials with constant thermal coefficients [20]

In section 3 we consider the problem (1)–(6) and the flux condition (7) will be replaced
by the following temperature condition:

T2(0, t) = Tm > Tf (13)

on the fixed face. We can remark that there exists a relationship between both condition (7)
and (13) on the fixed facex = 0 which is given by (46).

We prove the existence and uniqueness of the solution of problem (1)–(6) and (13) for all
thermal conditions.
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2. Existence and uniqueness of the solution of the free-boundary problem with a flux
condition on the fixed face

We consider the problem (1)–(7). If we now set

Ti = 8i(Ti) =
∫ Ti

T0i

ρcpi(σ ) dσ i = 1, 2 (14)

then (1) and (4) become

∂Ti

∂t
= ∂

∂x

(
ki(Ti)

8′i (Ti)
∂Ti

∂x

)
i = 1, 2. (15)

We remark that if (8) is true thenki(Ti) andSi(Ti) verify the Storm relation [16]

1√
ki(Ti) Si(Ti)

d

dT

(
log

√
Si(Ti)

ki(Ti)

)
= 1√

Ki
i = 1, 2. (16)

The above condition was originally obtained by Storm [19] in an investigation of heat
conduction in simple monatomic metals. There, the validity of the approximation (16) was
examined for aluminium, silver, sodium, cadmium, zinc, copper and lead.

Using (8) in (15) reduces the heat conduction equations in the two phases to the form

∂Ti

∂t
− ki ∂

∂x

(
1

Ti
2

∂Ti

∂x

)
= 0 i = 1, 2. (17)

Now we introduce the similarity variable

ξ = x

X(t)
X(t) =

√
2γ t γ > 0 (18)

and solutions of (17) are sought of the type

T i(x, t) = ϕi
(

x√
2γ t

)
i = 1, 2. (19)

Using the reciprocal transformation

dξ = 8∗i dξ ∗i 8∗i = 8−1
i (20)

and after several calculations we obtain that the required temperature distributionsT1 andT2

are given parametrically by

T1 = 8−1
1

{
A1 erf

[(
γ

2K1

)1/2

ξ ∗1

]
+B1

}−1

ξ1 = 1 +
∫ ξ∗1

λ1

{
A1 erf

[(
γ

2K1

)1/2

σ

]
+B1

}
dσ

(21)

and

T2 = 8−1
2

{
A2 erf

[(
γ

2K2

)1/2

ξ ∗2

]
+B2

}−1

ξ2 =
∫ ξ∗2

−√2/γ q0

{
A2 erf

[(
γ

2K2

)1/2

σ

]
+B2

}
dσ

(22)
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where the unknownsγ , Ai, Bi , λi (i = 1, 2) must satisfy the following system (cf [15]):

A1 erf

(√
γ

2K1
λ1

)
+B1 = 1

81(Tf )
(23)

A1 +B1 = 1

81(T0)
(24)

A2 erf

(√
γ

2K2
λ2

)
+B2 = 1

82(Tf )
(25)√

K2

π
A2 exp

(−q2
0

K2

)
= q0

(
A2 erf

( −q0√
K2

)
+B2

)
(26)

λ1 = Lρ +81(Tf )−82(Tf ) + λ2 (27)

1=
∫ λ2

−√2/γ q0

A2 erf

(√
γ

2K2
σ

)
dσ +B2

(
λ2 +

√
2

γ
q0

)
(28)

−A181(Tf )

√
2K1

π
exp

(
− γ

2K1
λ2

1

)
+A282(Tf )

√
2K2

π
exp

(
− γ

2K2
λ2

2

)
= Lρ√γ (29)

where

λ1 = ξ ∗1 |ξ=1 and λ2 = ξ ∗2 |ξ=1 (30)

and

erf(x) = 2√
π

∫ x

0
exp

(−u2
)

du. (31)

From (23)–(26) we obtain

A1 = 1

1− erf(
√
γ /2K1 λ1)

(
1

81(T0)
− 1

81(Tf )

)
B1 = 1

1− erf(
√
γ /2K1 λ1)

(
1

81(Tf )
− erf(

√
γ /2K1 λ1)

81(T0)

) (32)

A2 = 1

82(Tf )(G(q0/
√
K2) + erf(

√
γ /2K2 λ2))

B2 = G(q0/
√
K2)

82(Tf )(G(q0/
√
K2) + erf(

√
γ /2K2 λ2))

.

(33)

Taking into account (32) and (33), equation (28) by integration becomes

F(γ, λ2) = 0 (34)

whereF = F(γ, λ2) is defined by

F(γ, λ2) = −1 +
λ2

82(Tf )

G(u(γ, λ2)) +m

m + erf(u(γ, λ2))
γ > 0 λ2 > 0 (35)

with

m = G
(
q0√
K2

)
> 1 and u(γ, λ2) =

√
γ

2K2
λ2. (36)

Now, we just have to solve the system (34) and (29) to complete the solution, whereλ1 is
given by (27). First, we study equation (34).
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Lemma 1. Equation (34) defines implicitly an increasing functionλ2 = λ2(γ ) such as
F(γ, λ2(γ )) = 0. Moreover, we haveλ2(0+) = 0 andλ2(+∞) = 82(Tf ).

Proof. It is sufficient to apply Dini’s theorem by proving that∂F
∂λ2
(γ, λ2) 6= 0 for all γ andλ2.

We have

∂F

∂λ2
(γ, λ2) = 1

82(Tf )
W(u(γ, λ2),m) (37)

where

W(u,m) = 1− 2u exp(−u2)√
π(m + erf(u))

− 2 exp
(−2u2

)
π(m + erf(u))2

. (38)

In order to prove that∂F/∂λ2 > 0 for all γ andλ2, we note that

∂W

∂m
(u,m) = 2u exp(−u2)√

π(m + erf(u))
+ 4

exp
(−2u2

)
π(m + erf(u))3

> 0. (39)

ThenW(u,m) > W(u,1) for all u > 0.
Therefore, it is sufficient to demonstrate thatW(u, 1) > 0.
We obtainW(0+, 1) = 1− 2/π,W(∞, 1) = 1, and after many tedious manipulations we

also obtain(∂W/∂u)(u, 1) 6= 0, ∀u > 0. So, we have 0< 1− 2/π < W(u,1) < 1, ∀u > 0
and thenW(u,m) > W(u,1) > 0 for all u > 0 and finally we have that∂F/∂λ2 > 0 for all
γ andλ2.

Furthermore, taking into account (35) and (36) we obtain

∂F

∂γ
(γ, λ2) = −u2

82(Tf )γ (m + erf(u))

√
2K2

γπ

(
1

2u2
+ 1 +

exp(−u2)√
πu(m + erf(u))

)
< 0. (40)

Owing to∂F/∂λ2 > 0 and∂F/∂γ < 0 by Dini’s theorem, it results that there exists an
implicit function λ2 = λ2(γ ) such thatF(γ, λ2(γ )) = 0 for all γ and its derivative is given
by λ′2(γ ) = −(∂F/∂γ )/(∂F/∂λ2) > 0, for all γ . �

Now, replacingλ2 = λ2(γ ) in (29), we have the following theorem:

Theorem 1. The free-boundary problem (23)–(29) has a unique solution if and only ifq0

verifies the inequality (10).

Proof. In lemma 1 we found thatλ2 = λ2(γ ) is an increasing function, then for (27)
λ1 = λ1(γ ) is an increasing function too, with the propertiesλ1(0+) = Lρ +81(Tf )−82(Tf )

andλ1(+∞) = Lρ + 81(Tf ). Finally, we have to study the existence and uniqueness of
equation (29). Taking into account (32) and (33), equation (29) becomes

9(γ ) = Lρ√γ γ > 0 (41)

where

9(γ ) = −
√

2K1

π

81(Tf )−81(T0)

81(T0)

exp(−(γ /2K1)λ
2
1(γ ))

1− erf(
√
γ /2K1 λ1(γ ))

+

√
2K2

π

exp(−(γ /2K2)λ
2
2(γ ))

m + erf(
√
γ /2K2 λ2(γ ))

. (42)
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It easy to see that9 is a decreasing function such that9(+∞) = ∞. Now, it is necessary
to know the sign of9

(
0+
)

where

9
(
0+
) = √2K1

π

(
1− 81(Tf )

81(T0)

)
+

√
2K2

π

1

m
. (43)

From (12) [2] we have

9
(
0+
)
> 0 ⇐⇒

√
K2

K1

1

(81(Tf )/81(T0)− 1)
> m = G

(
q0√
K2

)

⇐⇒ G−1

(√
K2

K1

1

(81(Tf )/81(T0)− 1)

)
< G−1(m) = q0√

K2

⇐⇒ q0 >
√
K2G

−1

(√
K2

K1

1

(81(Tf )/81(T0)− 1)

)
(44)

that is inequality (10). To summarize, if the condition (10) is verified,9 is a decreasing
function such that9

(
0+
)
> 0 and9(+∞) = −∞, so there exists a unique valueγ which

satisfies the transcendental equation (41). �

Then we have the following theorem:

Theorem 2. The problem (1)–(7) has a Neumann-type unique solution if and only if the
coefficientq0 verifies the inequality (10). In this case the solution is given by (18), (21),
(22), (32) and (33),λ2 = λ2(γ ) is given by lemma 1,λ1 = λ1(γ ) is given by (27) andγ is the
unique solution of equation (41).

Theorem 2 shows us that when the thermal heat flux input coefficientq0 has a lower bound
of the type (10) we obtain an instantaneous phase-change process.

In contrast, ifq0 does not verify (10) then we only have a heat conduction problem for the
initial solid phase.

In the case whereq0 verifies the inequality (10), we can compute the temperature on the
fixed facex = 0. This temperature is given by

T2(0, t) = 8−1
2

(
q0
√
π82(Tf )√
K2

erf(
√
γ /2K2 λ2(γ )) +G(q0/

√
K2)

exp(−q2
0/K2)

)
(45)

which satisfies the conditionT2(0, t) > Tf , ∀t > 0.
Therefore, we can consider the problem (1)–(6) and (13). In the next section we shall prove

that this new mathematical problem has a similarity solution for all data, includingTm > Tf .

Remark 1. From condition (7), an imposed heat flux proportional to the− 1
2 power oft , we

can obtain condition (13), a constant-temperature boundary condition, through the following
relationship:

Tm = 8−1
2

(
q0
√
π82(Tf )√
K2

erf(
√
γ /2K2 λ2(γ )) +G(q0/

√
K2)

exp(−q2
0/K2)

)
(46)

whereγ is the unique solution of equation (41).
This was previously observed in [20] for constant thermal coefficients in both phases.

Remark 2. For the solidification process with an imposed heat flux proportional to the− 1
2

power oft we can obtain a similar result to theorem 2 for the fusion process.
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3. Existence and uniqueness of a solution of the free-boundary problem with a
temperature condition on the fixed face

Now, we consider the problem (1)–(6) and the temperature condition (13) on the fixed face
x = 0. Using (8), (14), (18) and

ξ1 = 1 +
∫ ξ∗1

ξ∗1 |ξ1=1

ϕ∗1 dξ ∗1 with ϕ∗1 =
1

ϕ1
(47)

and

ξ2 =
∫ ξ∗2

0
ϕ∗2 dξ ∗2 with ϕ∗2 =

1

ϕ2
(48)

the required temperature distributionsT1 and T2 of the problem (1)–(6), (13) are given
parametrically by

T1 = 8−1
1

{
A1 erf

[(
γ

2K1

)1/2

ξ ∗1

]
+B1

}−1

ξ1 =
∫ ξ∗1

λ1

{
A1 erf

[(
γ

2K1

)1/2

σ

]
+B1

}
dσ + 1

(49)

and

T2 = 8−1
2

{
A2 erf

[(
γ

2K2

)1/2

ξ ∗2

]
+B2

}−1

ξ2 =
∫ ξ∗2

0

{
A2 erf

[(
γ

2K2

)1/2

σ

]
+B2

}
dσ

(50)

where the unknownsγ,Ai, Bi, λi (i = 1, 2) must satisfy the following system:

1

81(Tf )
= A1 erf

(√
γ

2K1
λ1

)
+B1 (51)

1

82(Tf )
= A2 erf

(√
γ

2K2
λ2

)
+B2 (52)

1

81(T0)
= A1 +B1 (53)

1

82(Tm)
= B2 (54)

λ1 = λ2 +Lρ +81(Tf )−82(Tf ) (55)

1=
∫ λ2

0
A2 erf

(√
γ

2K2
σ

)
dσ +B2λ2 (56)

−A181(Tf )

√
2K1

π
exp

(
− γ

2K1
λ2

1

)
+A282(Tf )

√
2K2

π
exp

(
− γ

2K2
λ2

2

)
= Lρ√γ (57)

whereλ1 andλ2 are given by (30).
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From (51) and (54) we obtain

A1 = 1

1− erf(
√
γ /2K1 λ1)

(
1

81(T0)
− 1

81(Tf )

)
A2 = 1

(1/82(Tf )− 1/82(Tm)) erf(
√
γ /2K2 λ2)

(58)

B1 = 1

1− erf(
√
γ /2K1 λ1)

(
1

81(Tf )
− erf(

√
γ /2K1 λ1)

81(T0)

)
B2 = 1

82(Tm)
. (59)

Taking into account (58) and (59), equation (56) becomes

H(γ, λ2) = 0 (60)

where

H(γ, λ2) = −1 +A2(γ, λ2)

∫ λ2

0
erf

(√
γ

2K2
σ

)
dσ +B2λ2. (61)

Then we just have to solve the system (57) and (60) with unknownsγ andλ2 to complete
the solution. First, in analogous form developed in section 2, we study equation (60).

Lemma 2. There exists an increasing functionλ2 = λ2(γ ) such asH(γ, λ2(γ )) = 0 for all γ .

Proof. It is sufficient to apply Dini’s theorem by proving that∂H
∂λ2
(γ, λ2) 6= 0 for all γ andλ2.

We have

∂H

∂λ2
(γ, λ2) = A2(γ, λ2) erf

(√
γ

2K2
λ2

)
+
∂A2

∂λ2
(γ, λ2)

∫ λ2

0
erf

(√
γ

2K2
σ

)
dσ +B2

= 1

82(Tf )

(
1− β exp(−u2)

erf(u)

(
u +

exp(−u2)− 1√
π erf(u)

))
(62)

whereu is given by (36),

β = 2√
π

(
1− 82(Tf )

82(Tm)

)
> 0 and β1 = 1√

π

(
1

82(Tf )
− 1

82(Tm)

)
. (63)

Then we obtain

∂H

∂λ2
(γ, λ2) > 0 ⇐⇒

√
π

β
> M(u) (64)

where the functionM is defined by

M(x) = exp(−x2)

erf(x)

(
x
√
π +

exp(−x2)

erf(x)
− 1

erf(x)

)
∀ x > 0. (65)

Owing toβ < 2/
√
π,M(0) = 1

4π,M(+∞) = 0 andM ′(x) < 0, ∀x > 0, we obtain that
(64) is true for allγ, λ2.

Furthermore, we find

∂H

∂γ
(γ, λ2) = − β1λ2√

πγ erf(u)

(
(1− exp(−u2))

(
1

2u
− exp(−u2)√

π erf(u)

)
+ u exp(−u2)

)
< 0.

(66)

Then for (64) and (66), we have thatλ′2(γ ) = − ∂H
∂γ
(γ, λ2)

/
∂H
∂λ2
(γ, λ2) > 0. �
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Theorem 3. The free-boundary problem (51)–(57) has a unique solution for all data.

Proof. The coefficientsAi, Bi (i = 1, 2) are given by (58) and (59), respectively. In lemma 2
we found thatλ2 = λ2(γ ) is an increasing function, then for (55) we obtain thatλ1 = λ1(γ )

is an increasing function too. Finally, we have to study the existence and uniqueness of
equation (57). Taking into account (58) and (59), equation (57) becomes

3(γ ) = Lρ√γ γ > 0 (67)

where function3 is defined by

3(γ ) = −
√

2K1

π

(
81(Tf )−81(T0)

81(T0)

)
exp(−(γ /2K1)λ

2
1(γ ))

(1− erf(
√
γ /2K1 λ1(γ )))

+

√
2K2

π

(
82(Tm)−82(Tf )

82(Tm)

)
exp(−(γ /2K2)λ

2
2(γ ))

erf(
√
γ /2K2 λ2(γ ))

γ > 0 (68)

and it satisfies that3 is a decreasing function with3(+∞) = −∞ and3
(
0+
) = +∞. Then

there exists a uniqueγ which is a solution of the transcendental equation (67). �

Conclusion

We have obtained a similarity solution, analogous to the classical Neumann solution,
corresponding to the fusion process with nonlinear thermal coefficients for Storm-type
materials and a constant initial temperatureT0 of less than the melting temperatureTf .

We have proved that there exists an explicit solution for all data when a temperature
condition (13) is imposed on the fixed facex = 0. If we consider condition (7), an imposed
heat flux proportional to the− 1

2 power oft , then the explicit solution is obtained if and only
if the thermal flux input coefficientq0 has a lower bound given by (10).

The two boundary conditions on the fixed face (7), with datumq0, and (13), with datum
Tm, are related through the relationship given by (46).

Moreover, all results obtained for the fusion process for the Storm-type materials can also
be found for the solidification process with the corresponding analogous initial and boundary
conditions.
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